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Motivation

• Old Q: Given a machine learning task, what kinds of data

distributions make it easier or harder?

• New Q: Given a high dimensional learning task, when can

we solve it from a few random projections of the data with

good-enough approximation?



Illustration for Old Q



But we knew this for classification...
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Really?
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Illustration for New Q



Illustration for New Q

⇒

High dimensional data Random projection



Background (1)

• Johnson-Lindenstrauss Lemma ensures that all pairwise Eu-

clidean distances are preserved up to small distortion, if the

reduced dimension ≥ O(log(nr. points)).

– Early seminal work by (Arriaga & Vempala 1999) on RP-

perceptron relies on JLL

– Similar approach in [Maillard & Munos, NIPS’09] for com-

pressive OLS regression

– BUT: For learning, a bound that loosens with ≥ O(log(nr. points))

is unnatural.



Johnson-Lindenstrauss Lemma

The JLL is the following rather surprising fact:

Theorem[Johnson & Lindenstrauss, 1984] Let ε ∈ (0, 1). Let

N, k ∈ N such that k ≥ Cε−2 logN , for a large enough absolute

constant C. Let V ⊆ Rd be a set of N points. Then there exists

a linear mapping R : Rd → Rk, such that for all u, v ∈ V :

(1− ε)‖u− v‖2
`d2
≤ ‖Ru−Rv‖2

`k2
≤ (1 + ε)‖u− v‖2

`d2

• With high probability random projection satisfies JLL [Das-

gupta & Gupta ’02] (proof by Chernoff bounding).

• The bound on k is essentially tight: ∀N , ∃V s.t.

k ∈ Ω(ε−2 logN/ log ε−1) is required [Alon ’03].



Background (2)

• The Restricted Isometry Property (RIP) in Compressed Sens-

ing ensures that data that has a sparse representation can be

recovered exactly from just a few of its random projections,

if the reduced dimension ≥ O(nr. of nonzeros).

– Compressive OLS regression for data that has a sparse

representation [Fard et al, 2012]

– Compressive SVM [Calderbank et al. 2009] - similar ap-

proach, bound holds only if data has sparse representation

– BUT: Is sparse representation needed? In [K. AISTATS’2014]

new bound for cOLS without sparse requirement.



Restricted Isometry Property

Definition. Let R be a k×d, k < d matrix and s an integer. The

matrix R satisfies the RIP of order (s, δ) provided that, for all

s-sparse vectors x ∈ Rd:
(1− δ)‖x‖22 6 ‖Rx‖

2
2 6 (1 + δ)‖x‖22

One can show [Baraniuk ’07] that random projection matrices

satisfying the JLL w.h.p also satisfy the RIP w.h.p provided that

k ∈ O(s log d) . (Proof: JLL + covering + union bound over

subspaces of dimension k)

Theorem[Candès & Tao, 2006] If x ∈ Rd has a sparse representation with s

non-zeros and R satisfies RIP of order (2s, δ2s), then y := Rx one can recover

x exactly by x̂ = arg min
x

{‖x‖1 : y = Rx}.



Background (3)

Work that looks at preservation / non-preservation of margin

after a random projection:

• Large margin implies ‘low dimension of the problem’ [Balcan

& Blum, MLJ 2006]

• Is margin preserved? [Shi, Shen, Hill & Hengel, ICML 2012]

– The doubt / controvery on preservation of obtuse angles

is now resolved [K. KDD2015]

• BUT: Is there anything more general than margin?



Dot product under RP

Theorem [K. KDD’2015] Let x, y ∈ Rd. Let R ∈ Mk×d, k < d,

be a random projection matrix having i.i.d. 0-mean subgaussian

entries with parameter σ2 = 1/k, and let Rx, Ry ∈ Rk be the

images of x, y under R. Then, ∀ε ∈ (0, 1):

Pr{(Rx)TRy < xTy − ε · ‖x‖ · ‖y‖} < exp

(
−
kε2

8

)
(1)

Pr{(Rx)TRy > xTy + ε · ‖x‖ · ‖y‖} < exp

(
−
kε2

8

)
(2)



Corollaries: Clarifying the role of angle

Corollary [K. KDD2015] Denote by θ the angle between the

vectors x, y ∈ Rd. Then we have the following:

1. Relative distortion bound: Assume xTy 6= 0. Then,

Pr

{
|
xTRTRy

xTy
− 1| > ε

}
< 2 exp

(
−
k

8
ε2 cos2(θ)

)
(3)

2. Dot product under random sign projection: Assume xTy 6= 0.

Then,

Pr

{
xTRTRy

xTy
< 0

}
< exp

(
−
k

8
cos2(θ)

)
(4)



Experimental corroboration

We will compute empirical estimates of the following probabili-

ties, from 2000 independently drawn instances of the RP. The

target dimension varies from 1 to the original dimension d = 300.

• Rejection probability for dot product preservation = Proba-

bility that the relative distortion of the dot product after RP

falls outside the allowed error tolerance ε:

1− Pr
{

(1− ε) <
(Rx)TRy

xTy
< (1 + ε)

}
(5)
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Left: Two acute angles; Right: Two obtuse angles.

Preservation of these obtuse angles looks indeed worse...

...but not because they are obtuse (see next slide!).



Now take the angles symmetrical around π/2 and observe the

opposite behaviour. – this is why the previous result in [Shi et

al, ICML’12] has been misleading.
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Roadmap for rest of the talk

• Discovering benign structures & learning from RP data as

two sides of the same coin

– linear classification

– unconstrained nonparametric classification

• Addendum: Ensembles of compressive classifiers



Compressive Linear classification

Training set T N = {(xi, yi)}Ni=1; (xi, yi)
i.i.d∼ D over Rd × {0, 1}.

Let ĥ ∈ H be the ERM linear classifier. So ĥ ∈ Rd, and w.l.o.g.

we take it to pass through the origin, and can take that all data

lies on Sd−1 ⊆ Rd and ‖ĥ‖ = 1.

For an unlabelled query point xq the label returned by ĥ is then:

ĥ(xq) = 1
{
ĥTxq > 0

}
where 1{·} is the indicator function.

The risk (generalisation error) of ĥ is defined as E(xq,yq)∼D[L(ĥ(xq), yq)],

and we use the (0, 1)-loss:

L(0,1)(ĥ(xq), yq) =

{
0 if ĥ(xq) = yq
1 otherwise.



Random projection: R ∈ Mk×d, k � d, with entries rij
i.i.d∼

N (0, σ2). Pre-multiply the data points with it: T NR = {(Rxi, yi)}Ni=1.

Denote the trained classifier by ĥR ∈ Rk (possibly not through

the origin, but translation does not affect our proof technique)

The label returned by ĥR is therefore:

ĥR(Rxq) = 1
{
ĥTRRxq + b > 0

}
where b ∈ R.

We want to estimate the generalisation error of the ERM linear

classifier trained on T NR rather than T N :

E(xq,yq)∼D
[
L(0,1)(ĥR(Rxq), yq)

]
= Pr(xq,yq)∼D

{
ĥR(Rxq) 6= yq

}
with high probability w.r.t the random choice of TN and R.



Theorem [D-K, ICML’2013] For all δ ∈ (0, 1], with probability at
least 1− 2δ,

Prxq,yq{ĥR(Rxq) 6= yq} ≤ Ê(T N , ĥ) +
1

N

N∑
i=1

fk(θi)

+ min


√√√√3 log

1

δ

√√√√ 1

N

N∑
i=1

fk(θi),
1− δ
δ
·

1

N

N∑
i=1

fk(θi)

+ 2

√
(k + 1) log 2eN

k+1
+ log 1

δ

N

where fk(θi) := PrR{sign (ĥRTRxi) 6= sign (ĥTxi)} is the flipping

probability for xi with θi the principal angle between ĥ and xi,

and Ê(T N , ĥ) is the empirical risk of the data space classifier.



Also, if h∗ is the optimal linear classifier in Rd then ∀δ ∈ (0, 1],
w.p. at least 1− 2δ, denoting θ∗x = ∠(x, h∗):

Prxq,yq{ĥR(Rxq) 6= yq} ≤ Prxq,yq{h∗(xq) 6= yq}+ Exq
[fk(θ

∗
x)]

+ min

{√
3 log

1

δ

√
Exq

[fk(θ
∗
xq

)],
1− δ
δ
· Exq

[fk(θ
∗
xq

)]

}
+ 4

√
(k + 1) log 2eN

k+1
+ log 1

δ

N



Proof.(sketch) For a fixed instance of R, from classical VC the-
ory we have ∀δ ∈ (0, 1) w.p. 1− δ over T N ,

Prxq,yq{ĥR(Rxq) 6= yq} ≤ Ê(T NR , ĥR) + 2

√
(k + 1) · log(2eN/(k + 1)) + log(1/δ)

N

where Ê(T NR , ĥR) = 1
N

∑N
i=1 1{ĥR(Rxi) 6= yi} the empirical error.

We see RP reduces the complexity term but will increase the
empirical error. We bound the latter further:

Ê(T NR , ĥR) ≤ ... ≤
1

N

N∑
i=1

1{sign((Rĥ)TRxi) 6= sign(ĥTxi)}︸ ︷︷ ︸
S

+Ê(T N , ĥ)

Now, bound S from ER[S] w.h.p, w.r.t. the random choice of R.

The terms ER[S] represent the probability of label flipping.



Theorem [Upper Bound on Generalisation Error in Data Space]

Let T 2N = {(xi, yi)}2Ni=1 be a set of d-dimensional labelled train-
ing examples drawn i.i.d. from some data distribution D, and
let ĥ be a linear classifier estimated from T 2N by ERM. Let
k ∈ {1, 2, . . . , d} be an integer and let R ∈Mk×d be a random pro-

jection matrix, with entries rij
i.i.d∼ N (0, σ2). Then for all δ ∈ (0, 1],

with probability at least 1 − 4δ w.r.t. the random draws of T 2N

and R the generalisation error of ĥ w.r.t the (0,1)-loss is bounded
above by:

Prxq,yq{ĥTxq 6= yq} ≤ Ê(T 2N , ĥ) + 2 ·min
k

{
1

N

2N∑
i=1

fk(θi) ...

+ min


√√√√3 log

1

δ

√√√√ 1

N

2N∑
i=1

fk(θi),
1− δ
δ
·

1

N

2N∑
i=1

fk(θi)

+

√
(k + 1) log 2eN

k+1
+ log 1

δ

2N





Theorem [Sign Flipping Probability - case of Gaussian RP]

Let R be a RP matrix with entries rij
i.i.d∼ N (0, σ2), let h, x ∈ Rd,

and let θ be the angle between them. Let Rh,Rx ∈ Rk be the

images of x, y under R.

1. Exact form:

Pr{(Rh)TRx < 0} =
Γ(k)

(Γ(k/2))2

∫ ψ

0

z(k−2)/2

(1 + z)k
dz (6)

where ψ = (1− cos(θ))/(1 + cos(θ)).

2. If cos(θ) > 0, we have the following upper-bound:

Pr{(Rh)TRx < 0|hTx > 0} ≤ exp(−k cos2(θ)/2) (7)

Using [K., KDD’2015] it is possible to replace with computationally cheaper

sub-Gaussians for the slightly worse constant 8 replacong the 2 in eq.(7).



Relation of Sign Flipping Probability vs Margin

Flip probability and Margins

fk(θ) ≤ exp(−1
8k cos2(θ))

cos(θ) = m

Hence, low flip probabilities
imply large margins of points.



Optimising a RP-based dataspace bound
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Optimising a RP-based dataspace bound

Data set New SVM p-value

Australian 0.137± 0.015 0.148± 0.013 0.0002
German 0.260± 0.018 0.280± 0.016 < 0.0001

Haberman 0.265± 0.025 0.285± 0.050 0.0136
Parkinsons 0.141± 0.032 0.221± 0.049 < 0.0001

PlanningRelax 0.285± 0.029 0.361± 0.166 0.0024
Sonar 0.256± 0.045 0.271± 0.036 0.0689

Test error rates ± std for the bound optimizer in comparison

with the SVM. Bold font indicates significant improvement at

the 0.05 level cf. a paired t-test.



Summing up linear classification

For linear classifiers trained by ERM on i.i.d. traiing sample (and

no other assumptions a-priori), the use of RP revealed:

• The task is solvable in a random linear subspace (i.e. with

performance guarantees) if the label flipping probabilities un-

der a RP are small. This requirement is more general than

large margin.

• The dataspace ERM classifier’s error is small under the same

conditions.

• Note, we did not require any sparse representation for our

bounds to hold, as usually compressed learning approaches

do.



Roadmap for rest of the talk

• Discovering benign structures & learning from RP data as

two sides of the same coin

– linear classification

– unconstrained nonparametric classification

• Addendum: Ensembles of compressive classifiers



An unconstrained classifier: Nearest Neighbour

NN performs general learning of an unrestricted function class.

Because of this, some sort of smoothness of the label posterior

probability is known to be needed for learnability.

Let S = {(x1, y1), . . . , (xN , yN)} be a training set drawn i.i.d. from

some unknown distribution D over the input-output domain X×Y
where Y = {0, 1} for classification problems, and we take X =

[−1, 1]d.

Denote by η : Rd → R the true conditional probability of the

labels, i.e. η(x) = Pr(Y = 1|X = x). Since we consider un-

constrained general learning of an unconstrained function class,



some form of Lipschitz-like assumption is known to be needed

on η(·) for learnability.

Nearest neighbours classifier of S will be denoted as hS. Given

an input point x ∈ X it looks up its nearest neighbour, denoted

N(x) ∈ S it returns its label, hS(x) = YN(x).

The generalisation error of hS is defined as

err(hS) = E(x,y)∼D[hS(x) 6= y],

where (x, y) is a query point drawn independently from and iden-

tically distributed as the training points.

The Bayes-optimal classifier will be denoted as h∗.



Known result on Sample Complexity of NN

Theorem[Shalev-Schwarz & Ben-David 2014] Let X = [0, 1]d,Y =

{0, 1}, and D a distribution over X ×Y for which the conditional

probability function is L-Lipschitz. Let hS denote the nearest

neighbour rule applied to the training set S ∼ DN . Then,

ES[err(hS)] ≤ 2err(h∗) + 4L
√
dN
− 1
d+1 (8)

This implies the sample complexity

N ≥
(

4L
√
d

ε

)d+1

∈ Ω̃(exp(d)) (9)

to guarantee ES[err(hS)] ≤ 2err(h∗) + ε.



Tools

Definition[Packing number] Let (T, ‖ · ‖) be a totally bounded

pseudo metric space. Let α > 0. We say that T is α-separated

if ∀a, b ∈ T, a 6= b, ‖a, b‖ ≥ α.

The α-packing number of T is defined as the maximum cardi-

nality of the α-separated subsets of T , denoted as:

N‖·‖(α, T ) = max{|T ′| : T ′ is α-separable, T ′ ⊂ T}. When the pseudomet-

ric is clear from the context we can omit the subscript.

Definition[α-entropy number] The α-entropy number of T is

defined as the log of the packing number, H(α, T ) = logN(α, T ).

Definition[Metric entropy] The function H(·, T ) is called the

metric entropy of T .



Theorem [Klartag & Mendelson ’06] Let X ⊂ Rd. Let R be

a k × d, k < d random projection matrix with i.i.d. Gaussian or

Rademacher entries with mean 0 and variance σ2. Consider the

set of all normalised chords of X : T =
{

a−b
‖a−b‖ : a, b ∈ X

}
, with

‖ · ‖ being the Euclidean distance, and define the metric entropy

integral

γ(T ) =

∫ 1

0

√
H(α, T )dα (10)

where H(α, T ) is the α-entropy number of T w.r.t. the Euclidean

distance.

Then, ∃c absolute constant s.t. ∀ζ, δ ∈ (0, 1), if

k ≥ cζ−2(γ2(T ) + log(2/δ)) (11)



then R is an ζ-isometry on X with high probability, i.e. with

probability at least 1− δ we have:

(1− ζ)kσ2‖x− x′‖2 ≤ ‖Rx−Rx′‖2 ≤ (1 + ζ)kσ2‖x− x′‖2, ∀x, x′ ∈ X

• Generalises of the Johnson-Lindenstrauss lemma to infinte
sets of points X as long as γ(T ) is finite.

– When X is a finite set of N points it recovers Johnson-Lindenstrauss:
γ2(T ) ∈ O(log(N)).

– Also recovers the Restricted Isometry Property from Compressed
Sensing as a special case: for s-sparse vectors γ2(T ) ≤ 2s log(d/(2s)).

– Other low complexity structures include certain smooth manifolds,
and metric spaces with finite doubling dimension.



• Examples of low complexity input domains: linear subspace

of the input domain, certain smooth nonlinear subspaces,

domains that have a sparse representation, etc.
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• We shall see that such structures (including sparsity) do help

NN.



Compressive NN

Let R be a k × d, k < d random matrix with i.i.d. subgaussian

entries, e.g. a Gaussian or a Rademacher distribution.

Let SR = {(Rx1, yi), . . . , (RxN , yN))} (compressive training set).

Compressive NN receives SR, and will be denoted by hRSR
.

We are interested in the distribution of its expected generalisa-

tion error:

ES∼DN [err(hRSR
)] = ES[E(x,y)∼D[hRSR

(Rx) 6= y]]

as a random function of R.



Generalisation of compressive-NN

Theorem [K. ACML’2015] Let X = B(0, ρ) ⊂ Rd the ball of

radius ρ centered at 0, and D a distribution over X ×Y for which

the conditional probability function is L-Lipschitz. Let R be a

k × d RP matrix; let hRSR
the nearest neighbour rule on RP data

SR where S ∼ DN . Then ∀δ, ζ ∈ (0, 1), with probability at least

1 − δ over the random draws of R, the sample size required to

guarantee ES[err(hRSR
)] ≤ 2err(h∗) + ε w.p. 1− δ is

N ≥
1

e

(
2
√

2
√
k

ε

)k+1(
Lρ

√
1 + ζ

1− ζ

)k
= Ω̃(exp(γ(T ))

provided that k ∈ Ω(ζ−2(γ2(T ) + log(2/δ))).



Implication: Dataspace NN is no worse

Corollary Let X = B(0, ρ) ⊂ Rd,Y = {0, 1}, and D a distribution

over X × Y for which the conditional probability function is L-

Lipschitz. hS denote the nearest neighbour rule, where S ∼ DN .

For any δ, ζ ∈ (0, 1), The sample size required to guarantee

ES[err(hS)] ≤ 2err(h∗) + ε w.p. 1− δ is

N ≥
1

e

(
2
√

2
√
k

ε

)k+1(
Lρ

√
1 + ζ

1− ζ

)k
= Ω̃(exp(γ(T ))

Proof [of Corollary] ‖x−N(x)‖2 ≤ ‖x−NR(x)‖2, where N(x) ∈ S is the NN of

x, and NR(x) is the x′ ∈ S s.t. Rx′ is the NN of Rx after RP. �



Empirical results - 100-D data on 2D linear
subspace / & sparse
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Linear subspace 2D
Lin. subspace 2D + sparse 1D
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Linear subspace 2D
Lin. subspace 2D + sparse 1D

NN and Compressive NN have very similar error behaviour; Sparse representation of the

input data lowers the error.



Empirical results - 100-D data on 2D nonlinear
subspace / & sparse
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Manifold 2D
Manifold 2D + sparse 1D
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Manifold 2D
Manifold 2D + sparse 1D

NN and Compressive NN have very similar error behaviour; Sparse representation of the

input data lowers the error.



Empirical results - Effect of sparse
representation
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Empirical results - All points on the same linear
subspace
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the previous experiment.

k = 2s



Addendum - Ensembles of compressive learners

We will look at a very specific ensemble, for problems with less

training observations than data dimensions.

The base learners will be Fisher Linear Discriminants, and the

combination rule is simple averaging.

• Can we achieve (or improve on) the classification perfor-

mance in data space, using the RP FLD ensemble?

• Can we understand how the RP FLD ensemble acts to im-

prove performance?

• Can we interpret the RP ensemble classifier parameters in

terms of data space parameters?



Fisher’s Linear Discriminant (FLD)

µµ
0
.

1.

• Simple and popular linear classifier, in widespread application. Classes
are modelled as identical multivariate Gaussians.

• Assign class label to any query point according to its Mahalanobis dis-
tance from the class means.

• Simple enough to allow a deeper analysis addressing our questions.



RP-FLD classifier ensemble

Training set T = {(xi, yi) : (x, y) ∈ Rd×{0, 1}}Ni=1 of N real-valued d-dimensional
points. Two-class classification setting.
Assume that N � d, which is a common situation e.g. medical imaging,
genomics, proteomics, etc.

For a single RP FLD classifier, the decision rule is given by:

1

{
(µ̂1 − µ̂0)

TRT
(
RΣ̂RT

)−1
R

(
xq −

µ̂1 + µ̂0

2

)
> 0

}
which is the randomly projected analogue of the FLD decision rule. For the
ensemble we use an equally weighted linear combination of RP FLD classifiers:

1

{
1

M

M∑
i=1

(µ̂1 − µ̂0)
TRT

i

(
RiΣ̂R

T
i

)−1
Ri

(
xq −

µ̂1 + µ̂0

2

)
> 0

}
(12)

Linear combination rules are a common choice for ensembles. This rule works

well in practice and it is also tractable to analysis.



Observation

We can rewrite decision rule as:

1

(µ̂1 − µ̂0)T
1

M

M∑
i=1

RTi

(
RiΣ̂R

T
i

)−1
Ri

(
xq −

µ̂1 + µ̂0

2

)
> 0


Then, for average case analysis with a fixed training set, it is

enough to consider:

lim
M→∞

1

M

M∑
i=1

RTi

(
RiΣ̂R

T
i

)−1
Ri = E

[
RT
(
RΣ̂RT

)−1
R

]



Ingredients (1)

Rows (and columns) of R drawn from a spherical Gaussian, hence

for any orthogonal matrix U , R ∼ RU . Eigendecomposing Σ̂ =

UΛ̂UT and using UUT = I we find that:

E

[
RT
(
RΣ̂RT

)−1
R

]
= U E

[
RT
(
RΛ̂RT

)−1
R

]
UT (13)

Furthermore since a matrix A is diagonal if and only if V AV T =

A for all diagonal orthogonal matrices V = diag{±1} we can

similarly show that the expectation on RHS is diagonal.

Now enough to evaluate the diagonal terms on RHS!

[Marzetta et al.’11] by a complicated procedure. We are more interested

in how it relates to characteristics of Σ̂ so we prefer simply interpretable

estimates.



Ingredients (2)

Define ρ := rank(Λ̂) = rank(Σ̂).

Work with positive semidefinite ordering: A � B ⇐⇒ A − B

is positive semidefinite (p.s.d ≡ symmetric with all eigenvalues

> 0).

Upper and lower bound the diagonal matrix expectation (13) in

the p.s.d ordering with spherical matrices αmax · I, αmin · I to

bound its condition number in terms of data space parameters:

αmax · I � E

[
RT
(
RΛRT

)−1
R

]
� αmin · I

Where α = α(k, ρ, λmax, λmin 6=0), k is the projected dimensionality,

ρ = rank(Λ̂) = rank(Σ̂), λmax and λmin 6=0 are respectively the

greatest and least non-zero eigenvalues of Σ̂.



Results: The regularisation effect

Theorem. Let Σ̂ ∈ Md×d be a symmetric positive semi-definite

matrix with rank ρ ∈ {3, ..., d−1}, and denote by λmax(Σ̂), λmin 6=0(Σ̂) >

0 its greatest and least non-zero eigenvalues. Let k < ρ − 1 be

a positive integer, and let R ∈ Mk×d be a random matrix with

i.i.d N (0, 1) entries. Let Ŝ−1 := E

[
RT
(
RΣ̂RT

)−1
R

]
, and denote

by κ(Ŝ−1) its condition number, κ(Ŝ−1) = λmax(Ŝ−1)/λmin(Ŝ−1).

Then:

κ(Ŝ−1) 6
ρ

ρ− k − 1
·
λmax(Σ̂)

λmin 6=0(Σ̂)

This theorem implies that for a large enough ensemble the condition number

of the sum of random matrices 1
M

∑M
i=1R

T
i

(
RiΣ̂RT

i

)−1
Ri is bounded.



Exact Generalisation error of the converged

ensemble conditioned on fixed training set

Lemma [D-K, MLJ]. Let xq|yq ∼ N (µy,Σ), where Σ ∈ Md×d is

a full rank covariance matrix. Let R ∈Mk×d be a RP matrix with

i.i.d. Gaussian entries and denote S−1
R

:= 1
M

∑M
i=1R

T
i

(
RiΣ̂R

T
i

)−1
Ri.

Then the error of the ensemble conditioned on training set equals:

1∑
y=0

πyΦ

−1

2

(µ̂¬y − µ̂y)TS−1
R

(µ̂0 + µ̂1 − 2µy)√
(µ̂1 − µ̂0)TS−1

R
ΣS−1

R
(µ̂1 − µ̂0)


For the converged ensemble, substitute the expectation (13) for

S−1
R

above.



Generalisation error of the converged ensemble

Theorem [D-K, MLJ]. Let T = {(xi, yi)}Ni=1 be a set of training data of
size N = N0 + N1, subject to N < d and Ny > 1 ∀y. Let xq be a query point
with Gaussian class-conditionals xq|yq ∼ N (µy,Σ), and let Pr{yq = y} = πy. Let
ρ be the rank of the maximum likelihood estimate of the covariance matrix
and let k < ρ − 1 be a positive integer. Then for any δ ∈ (0, 1) we have w.p.
1− δ w,r,t, random draws of T :

Pr
xq,yq

(ĥens(xq) 6= yq) 6
1∑
y=0

πyΦ

(
−
[
g

(
κ̄

(√
2 log

5

δ

))
× . . . (14)

. . .

√‖Σ− 1

2(µ1 − µ0)‖2 +
dN

N0N1
−

√
2N

N0N1
log

5

δ


+

−

√
d

Ny

(
1 +

√
2

d
log

5

δ

)
where κ̄(ε) is a high probability (w.r.t draws of T ) upper bound

on the condition number of ΣŜ−1 (given in the paper) and g(·)
is the function g(a) :=

√
a

1+a.



Experiments: Datasets

Datasets:
Name Source #samples #features
colon [Alon et al.] 62 2000
leukemia [Golub et al.] 72 3571
leukemia large [Golub et al.] 72 7129
prostate [Singh et al.] 102 6033
duke [West et al.] 44 7129



Experiments: Protocol

• Standardised features to have mean 0 and variance 1 and ran experiments
on 100 independent splits. In each split took 12 points for testing, rest
for training.

• For data space experiments on colon and leukaemia used ridge-regularised
FLD for comparison and fitted regularisation parameter using 5-fold CV.

• For other datasets we used diagonal FLD in the data space (size, no sig.
diff. in error on colon, leuk.).

• RP base learners: FLDs with full covariance and no regularisation when
k 6 ρ and pseudoinverted FLD when k > ρ.

• Compared performance with SVM with linear kernel as in [Fradkin et al.]



Experiments: Results for k = ρ/2

Mean error rates ± 1 standard error, estimated from 100 inde-

pendent splits when k = ρ/2:

Dataset ρ/2 100 RP-FLD 1000 RP-FLD SVM

colon 24 13.58 ± 0.89 13.08 ± 0.86 16.58 ± 0.95
leuk. 29 1.83 ± 0.36 1.83 ± 0.37 1.67 ± 0.36
leuk.lg. 29 4.91± 0.70 3.25 ± 0.60 3.50 ± 0.46
prost. 44 8.00 ± 0.76 8.00 ± 0.72 8.00 ± 0.72
duke 15 17.41 ±1.27 16.58 ± 1.27 13.50 ± 1.10

More experiments, incl. the 100,000-dimensional Dorothea data

set + detailed comparisons are in the paper:

[D-K, Machine Learning, 2015]



Experiments – effect of k
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FLD data space
RP−FLD
Averaging 10 RP−FLDs
Averaging 100 RP−FLDs
Averaging 3000 RP−FLDs
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FLD data space
RP−FLD
Averaging 10 RP−FLDs
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Averaging 3000 RP−FLDs

Test error rates versus k and error bars mark 1 standard error estimated from

100 runs. In these experiments we used Gaussian random matrices with i.i.d

N (0, 1) entries.



Experiments – different RP matrices
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Dataspace FLD
RP−FLD k=1 Averaging
RP−FLD k=5 Averaging
RP−FLD k=10 Averaging
RP−FLD k=24 Averaging
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Dataspace FLD
RP−FLD k=1 Averaging
RP−FLD k=5 Averaging
RP−FLD k=10 Averaging
RP−FLD k=24 Averaging
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Dataspace FLD
RP−FLD k=1 Averaging
RP−FLD k=5 Averaging
RP−FLD k=10 Averaging
RP−FLD k=24 Averaging
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Dataspace FLD
RP−FLD k=1 Averaging
RP−FLD k=5 Averaging
RP−FLD k=10 Averaging
RP−FLD k=24 Averaging
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Dataspace FLD
RP−FLD k=1 Averaging
RP−FLD k=5 Averaging
RP−FLD k=10 Averaging
RP−FLD k=29 Averaging
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Dataspace FLD
RP−FLD k=1 Averaging
RP−FLD k=5 Averaging
RP−FLD k=10 Averaging
RP−FLD k=29 Averaging
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Dataspace FLD
RP−FLD k=1 Averaging
RP−FLD k=5 Averaging
RP−FLD k=10 Averaging
RP−FLD k=29 Averaging
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Dataspace FLD
RP−FLD k=1 Averaging
RP−FLD k=5 Averaging
RP−FLD k=10 Averaging
RP−FLD k=29 Averaging

Column 1 : Majority Vote using Gaussian random matrices; Column 2 : Averaging ensemble

using Gaussian r.m; Column 3 : Averaging ensemble using ±1 random matrices. Column 4 :

Averaging ensemble using the sparse {−1, 0,+1} random matrices from [Achlioptas ’03].



Summing up compressive ensenbles

We examined a simple averaging ensemble of compressive FLD,

which turns out to be interpretable in the original Rd as imple-

menting a sophisticated regularisation scheme that can outper-

form ridge regularised dataspace FLD.

Our results on single compressive learners, as well as on ensem-

bles, suggest that random projections may be used to uncover

the structures and problem characteristics that allow effective

and efficient learning for high dimensional data.

Extending the analysis to study other learning settings is subject

to future work.
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