Module Information

Module Identifier
Module Title
Academic Year
Intended for use in future years

Course Delivery

Delivery Type Delivery length / details
Seminars / Tutorials 3 Hours. (3 x 1 hour example classes)
Lecture 19 Hours. (19 x 1 hour lectures)


Assessment Type Assessment length / details Proportion
Semester Exam 2 Hours   (written examination)  100%
Supplementary Assessment 2 Hours   (written examination)  100%

Learning Outcomes

On completion of this module, a student should be able to:
1. interpret conditions for the existence and uniqueness of solutions of autonomous ordinary differential equations;
2. explain what is meant by the invariant intervals for an equation;
3. classify the critical points of one-dimensional systems;
4. classify the critical points of linear two-dimensional systems;
5. locate and classify the critical points of two-dimensional nonlinear systems;
6. sketch possible phase portraits of two-dimensional nonlinear systems;
7. describe simple ecological models and draw appropriate conclusions;
8. solve second order systems by matched asymptotic expansions.

Brief description

A wide variety of phenomena can be modelled by means of ordinary differential equations.
Very few such equations can be solved explicitly, and in the quantitative theory of differential equations methods have been developed to determine the behaviour of solutions directly from the equation itself. The subject was pioneered in the early part of the twentieth century by Poincare and then by Liapunov. This module provides a thorough grounding in the theory of dynamical systems and nonlinear differential equations.


To provide an introduction to the qualitative theory of nonlinear differential equations, with particular emphasis on the construction of phase portraits of two-dimensional systems and applications.


1. Existence and uniqueness of solutions; autonomous and non-autonomous systems.
2. One-dimensional systems; stability and invariance of solutions.
3. Two-dimensional linear systems: classification of critical points.
4. Critical points of two-dimensional nonlinear systems. linearised stability theorem, Poincare-Benedixson theorem, conservative systems; construction of possible phase portraits.
5. Modelling by means of two-dimensional nonlinear systems, eg predator-prey models, infectious disease models.
6. Singular pertubations and matched asymptotic expansions. Law of mass action in chemical reactions.

Reading List

Supplementary Text
D W Jordan & Smith (1987) Nonlinear ordinary differential equations. 2nd Oxford University Press Primo search J Guckenheimer & P Holmes (1983) Nonlinear oscillations, dynamical systems & bifurcations of vector fields Springer Primo search M Hisch and S Smale (1974) Differential equations, dynamical systems, and linear algebra. Academic Press Primo search P Glendinning (1994) Stability, instability and chaos : an introduction to the theory of nonlinear differential equations CUP Primo search


This module is at CQFW Level 6