Module Information

Module Identifier
Module Title
Biological chemistry
Academic Year
Semester 2
Reading List
Other Staff

Course Delivery



Assessment Type Assessment length / details Proportion
Semester Assessment Scientific report  1000 Words  30%
Semester Assessment 1 Hours   Online test  Online test analysing the data from a practical session  30%
Semester Exam 2 Hours   Exam  40%
Supplementary Assessment Scientific report  1000 Words  30%
Supplementary Assessment 1 Hours   Online test  30%
Supplementary Exam 2 Hours   Exam  40%

Learning Outcomes

On successful completion of this module students should be able to:

Demonstrate an understanding of acid-base equilibria in biological systems, including pH calculations, buffers and acid/base titrations.

Recognise isomerism including stereochemistry and the 3D shapes of molecules.

Demonstrate knowledge of spectroscopic techniques for the determination of structures of organic molecules.

Apply fundamental basic physical chemical principles to thermodynamics and kinetics in biological systems.

Be able to explain the fundamentals and core principles in organic chemistry, including orbital hybridisation, structure, stability and shape of organic molecules. Demonstrate understanding of mechanistic organic chemistry and how this applies to biomolecules.

Discuss and describe the major biochemical metabolic pathways/cycles within cells, including start- and end- points, intermediates, enzymes and co-factors.

Discuss the interaction of these pathways and cycles.

Brief description

The module will discuss and outline the application of physical and organic chemistry to the study of biomolecules and biochemical processes. This will include thermodynamics and kinetics, structure and reactivity of organic biomolecules, acid-base equilibria and spectroscopy. These will form the basis of understanding fundamental biochemical processes, pathways and cycles. Metabolism and the functions of amino acids, sugars and lipids will be outlined.


A study of biologically important functional groups will lead to a review of the concept of pH, acids, bases and buffers. Other aspects of physical chemistry will include energetics, binding of ligands and electrochemistry, the relevance to biological processes will be emphasized with examples. The topics of chemical equilibria and reaction kinetics will be discussed by considering the role of enzymes in biological reactions. Basic concepts in stereochemistry of natural organic compounds will be described and the different types of stereoisomers (geometric and optical isomerism). Optical activity will include both the D and L system and the R and S nomenclature. Review and concepts of spectroscopic methods and structure determination will be by IR, UV-VIS, MS and NMR Spectroscopy.

Fundamentals of organic chemistry will be discussed, focusing on important chemical concepts, with emphasis on biologically related chemistry to grasp the importance of organic chemistry in understanding reactions in living organisms. The structure, reactivity and synthesis of biologically important organic compounds (amino acids, nucleotides, sugars, lipids, aldehydes, ketones, aromatic compounds and heterocycles) will be broadly covered. The major reaction types discussed include nucleophilic substitution, electrophilic aromatic substitution, addition reactions, oxidation and reduction, eliminations and rearrangements.

Module Skills

Skills Type Skills details
Subject Specific Skills Subject specific concepts relating to biochemistry will be developed. Students will be able to demonstrate an understanding of chemical principles as applied to molecular biology with examples. Students will gain key skills in extrapolating and interpreting complex data through lectures and practicals. Students will gain an understanding of the fundamentals and core aspects of organic, physical and biological chemistry in lectures and will be applied to solve chemical problems.


This module is at CQFW Level 4