Neville Greaves
BSc (St Andrews) PhD (Cantab) ScD (Cantab) Dr Hon Causa (Orleans) FGST FInstP

Distinguished Research Professor

Contact Details

Room Number..........:  3.21
Building....................:  Physical Sciences
Phone.......................:   +44 (0)1970 621907
E-Mail........................:   gng
Home Page...............:   Personal


Educated at King Edward VII School and a graduate in Natural Philosophy from the University of St Andrews, I worked in industry before obtaining my PhD in Amorphous Semiconductors at the Cavendish Laboratory, Cambridge. This included working with the Nobel Laureate Professor Sir Nevill Mott.

I joined the Synchrotron Radiation Source at Daresbury Laboratory in 1978, where I built up X-ray Spectroscopy facilities and established the Materials Science Division. Together we pioneered the development of combined X-ray techniques whereby spectroscopy, diffraction and scattering can all be measured in the same experiment. In 1990 I received the Science and Technology Award presented by the Guild of Glass Sellers for my work on glass structure. In 1994 I started the international conference series on Synchrotron Radiation in Materials Science and between1994-96 I was the UK International Advisory Committee Member for the world’s largest synchrotron radiation source, SPring-8 in Japan.

In 1996 I was elected to the Chair of Physics at Aberystwyth and was head of department until 2003. During that time I was also a member of the Royal Institution Davy Faraday Research Laboratory Committee. I received a Doctor Honoris Causa at the University of Orleans in 2002 for advancing the understanding of disordered materials using synchrotron radiation.

In 2003 I was appointed Director of the Institute of Mathematics and Physics at Aberystwyth University, continuing until 2010. Between 2005 and 2009 I served on the Council of the Institute of Physics. I was awarded a Scientiae Doctor at the University of Cambridge in 2008. I joined the Science Board of the UK’s Science and Technology Facilities Council in 2009. In the same year I was awarded an Honorary Chair at University College London.

In 2010 I became a Distinguished Research Professor in Physics at Aberystwyth University and also a Distinguished Research Fellow at the Department of Materials Science and Metallurgy at the University of Cambridge. I received the 2011 George W Morey Award, from the American Ceramic Society, for major contributions to the field of glass science. International workshops marking my 65th and 70th birthdays were held at University College London and at the Royal Society. In 2012 I was awarded a DAAD scholarship for collaborative work on ultra-high temperature liquids at German Aerospace, Cologne. In the same year I was elected a Foreign Learned Scholar at Shanghai University, and also became a Visiting Research Fellow at Sidney Sussex College Cambridge. Wuhan University of Technology elected me their Strategic Scientist in 2013. In 2016 I was the Cooper Distinguished Lecturer at the annual meeting of the American Ceramic Society.

My other interests include poetry and music, and with my wife I have also restored an Elizabethan Merchants house in Cheshire.

Research Groups

Research Interests

  • Physics and Chemistry of Complex Materials: My principal research relates to the physics and chemistry of complex materials – inorganic glasses, glass forming liquids and amorphising solids (Advances in Physics 56, 1, 2007). Earlier in my career I pioneered discovery of the electronic structure of amorphous semiconductors like arsenic (Advances in Physics 28, 49, 1979). With the advent of dedicated synchrotron radiation sources, I turned to metals and glasses, modelling the structure and dynamics (Nature, 293, 611 (1981), Nature, 294, 139 (1981), Nature 356, 504 (1992)) which led to the Modified Random Network model, now generally accepted as describing the nanostructure of most glasses. Often my research has been underpinned by instrument development, such as combining X-ray techniques, for instance, to follow in situ the operation of catalysts (Nature, 354, 465 (1991), Science, 265, 1675 (1994), Nature Materials 7, 827 (2008)), and also the amorphization of crystalline materials such as zeolites (Nature Materials 2, 622 (2003)). In the latter case this has led to the discovery of novel hybrid glasses (Nature Communications 6 8079 (2015)). In conjunction with the development of laser-heated aerodynamic levitation furnaces, high speed videoing and calorimetry, liquid-liquid transitions were identified for the first time (Science 322, 566 (2008)). Subsequently, using the ‘wobbling drop’ technique, thermo-physical properties, such as viscosity, have now been demonstrated at ultra-high temperatures, for example up for alumina up to its boiling point at 3300 K from the deeply super-cooled state (Review of Scientific Instruments 84, 124901 (2013), International Journal of Microgravity Scientific Applications 32, 320200 (2015)). Many of these discoveries are now providing surprisingly new insight into mechanical properties, such as Poisson’s ratio, of glasses quenched from super-cooled liquids (Nature Materials 10, 823 (2011), Notes and Records of the Royal Society 67, 37 (2012)). In parallel with this research, I have exploited novel inelastic neutron scattering methods to identify collective terahertz modes in precipitating zeolite collapse and also in characterizing the glassy state (Science 308, 1299 (2005)). Together with terahertz spectroscopy and atomistic modelling, in situ Neutron Compton Scattering is now being directed at tracing and understanding the mechanical toughness of bio-cements as they set (Nature Communications 6 8631 (2015)). With 331 papers published, 15 plenary/invited lectures have been presented in the last 3 years.



Tian, K.V., Mahmoud, M.Z., Cozza, P., Licoccia, S., Fang, D., Di Tommaso, D., Chass, G.A., Greaves, G.N. 2016. Periodic vs. molecular cluster approaches to resolving glass structure and properties: Anorthite a case study. Journal of Non-Crystalline Solids 451 pp. 138-145. 10.1016/j.jnoncrysol.2016.06.027 Cadair

Bennett, T.D., Yue, Y., Li, P., Qiao, A., Tao, H., Greaves, N.G., Richards, T., Lampronti, G.I., Redfern, S.A.T., Blanc, F., Farha, O.K., Hupp, J.T., Cheetham, A.K., Keen, D.A. 2016. Melt-Quenched Glasses of Metal–Organic Frameworks. Journal of the American Chemical Society 138 (10) pp. 3484-3492. 10.1021/jacs.5b13220 Cadair


Tian, K.V., Yang, B., Yue, Y., Bowron, D.T., Mayers, J., Donnan, R.S., Dobó-nagy, C., Nicholson, J.W., Fang, D., Greer, A.L., Chass, G.A., Greaves, G.N. 2015. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting. Nature Communications 6 8631 10.1038/ncomms9631 Cadair

Bennett, T.D., Tan, J., Yue, Y., Baxter, E., Ducati, C., Terrill, N.J., Yeung, H.H.-., Zhou, Z., Chen, W., Henke, S., Cheetham, A.K., Greaves, G.N. 2015. Hybrid glasses from strong and fragile metal-organic framework liquids. Nature Communications 6 8079 10.1038/ncomms9079 Cadair

Pedersen, M.T., Tian, K.V., Dobó-Nagyb, C., Cass, G.A., Greaves, G., Yue, Y. 2015. Phase separation in an ionomer glass: Insight from calorimetry and phase transitions. Journal of Non-Crystalline Solids 415 pp. 24-29. 10.1016/j.jnoncrysol.2015.02.012 Cadair

Palenta, T., Fuhrmann, S., Greaves, G., Schwieger, W., Wondraczek, L. 2015. Thermal collapse and hierarchy of polymorphs in a faujasite-type zeolite and its analogous melt-quenched glass. Journal of Chemical Physics 142 (8) 084503 10.1063/1.4913240 Cadair

Hou, J., Li, Y., Mao, M., Yue, Y., Greaves, G.N., Zhao, X. 2015. Full solar spectrum light driven thermocatalysis with extremely high efficiency on nanostructured Ce ion substituted OMS-2 catalyst for VOCs purification. Nanoscale 7 (6) pp. 2633-2640. 10.1039/C4NR06410K Cadair


Langstaff, D.P., Gunn, M.D., Greaves, G.N., Marsing, A., Kargl, F. 2013. Aerodynamic levitator furnace for measuring thermophysical properties of refractory liquids. Review of Scientific Instruments 84 (12) 124901 10.1063/1.4832115 Other Cadair

Greaves, G.N. 2013. Poisson's ratio over two centuries: challenging hypotheses. Notes and Records of the Royal Society 67 (1) pp. 37-58. 10.1098/rsnr.2012.0021 Cadair

McMillan, P.F., Greaves, G., Wilson, M., Wilding, M., Daisenberger, D. 2013. Polyamorphism and Liquid–Liquid Phase Transitions in Amorphous Silicon and Supercooled Al2O3–Y2O3 Liquids. In H. E. Stanley. (ed) Liquid Polymorphism. Advances in Chemical Physics, vol. 152 Wiley pp. 309-355. 10.1002/9781118540350.ch12 Cadair


Flikkema, E., Zhou, Z., Greaves, N. 2011. Using visualisation techniques and Molecular Dynamics to study atoms diffusing in glass. Eurographics 2011 proceedings. Eurographics 2011. Eurographics pp. 47-48. Cadair

Greaves, G.N., Greer, A.L., Lakes, R.S., Rouxel, T. 2011. Poisson’s ratio and modern materials. Nature Materials 10 pp. 823-837. 10.1038/nmat3134 Cadair

Hennet, L., Pozdnyakova, I., Bytchkov, A., Drewitt, J., Kozaily, J., Leydier, M., Brassamin, S., Zanghi, D., Fischer, H.E., Greaves, G.N., Price, D.L. 2011. Application of time resolved x-ray diffraction to study the solidification of glass-former melts. High Temperatures-High Pressures 40 (263) pp. 263-270. Cadair

Flikkema, E., Greaves, N., Zhou, Z. 2011. Molecular Dynamics Study of Ion Diffusion in Glassy Materials. International Conference on Materials for Advanced Technologies 2011. Cadair

Hennet, L., Cristiglio, V., Kozaily, J., Pozdnyakova, I., Fischer, H.E., Bytchkov, A., Drewitt, J.W.E., Leydier, M., Thiaudière, D., Gruner, S., Brassamin, S., Zanghi, D., Cuello, G.J., Koza, M., Magazù, S., Greaves, G.N., Price, D.L. 2011. Aerodynamic levitation and laser heating: Applications at synchrotron and neutron sources. The European Physical Journal Special Topics 196 (1) pp. 151-165. 10.1140/epjst/e2011-01425-0 Cadair

Greaves, N. 2011. Polyamorphism and the universal liquid-liquid critical point in the supercooled state. Diamond Light Source Proceedings 1 (SRMS-7) e121 pp. 1-5. 10.1017/S2044820110000407 Other Cadair

Greaves, G.N., Wilding, M.C., Hennet, L., Langstaff, D., Kargl, F., Benmore, C.J., Weber, J.K.R. 2011. Comment on "Liquid-Liquid Phase Transition in Supercooled Yttria-Alumina". Physical Review Letters 106 (11) 119601 10.1103/PhysRevLett.106.119601 Other Cadair

Greaves, G.N., Wilding, M.C., Langstaff, D., Kargl, F., Hennet, L., Benmore, C.J., Weber, J.K.R., Van, Q.V., Majerus, O., McMillan, P.F. 2011. Composition and polyamorphism in supercooled yttria-alumina melts. Journal of Non-Crystalline Solids 357 (2) 6th International Discussion Meeting on Relaxation in Complex Systems. pp. 435-441. 10.1016/j.jnoncrysol.2010.06.072 Other Cadair


Greaves, G.N., Wilding, M.C., Van, Q.V., Majérus, O., Hennet, L. 2009. Characterising density fluctuations in liquid yttria aluminates with small angle x-ray scattering. In R. Magalhaes Paniago. (ed) SYNCHROTRON RADIATION IN MATERIALS SCIENCE: Proceedings of the 6th International Conference on Synchrotron Radiation in Materials Science. AIP Conference Proceedings, vol. 1092 6th International Conference on Synchrotron Radiation in Materials Sciences. AIP Publishing, MELVILLE pp. 71-74. 10.1063/1.3086239 Cadair

Greaves, G.N., Kargl, F., Ward, D., Holliman, P., Meneau, F. 2009. Inelastic X-ray Scattering Studies of Zeolite Amorphisation. In R. Magalhaes-Paniago. (ed) AIP Conf. Proc. 1092. AIP Publishing pp. 51-54. 10.1063/1.3086234 Cadair

Wilding, M.C., Greaves, G.N., Van, Q.V., Majérus, O., Hennet, L. 2009. Structure factor changes in supercooled yttria-alumina. In R. M. Paniago. (ed) SYNCHROTRON RADIATION IN MATERIALS SCIENCE: Proceedings of the 6th International Conference on Synchrotron Radiation in Materials Science. AIP Conference Proceedings, vol. 1092 6th International Conference on Synchrotron Radiation in Materials Science. AIP Publishing, MELVILLE pp. 98-101. 10.1063/1.3086244 Cadair

Greaves, G.N., Wilding, M.C., Fearn, S., Kargl, F., Hennet, L., Bras, W., Majerus, O., Martin, C.M. 2009. Liquid-liquid transitions, crystallization and long range fluctuations in supercooled yttrium oxide-aluminium oxide melts. Journal of Non-Crystalline Solids 355 (10-12) pp. 715-721. 10.1016/j.jnoncrysol.2009.01.030 Cadair

Bras, W., Clark, S.M., Greaves, G.N., Kunz, M., van Beek, W., Radmilovic, V. 2009. Nanocrystal Growth in Cordierite Glass Ceramics Studied with X-ray Scattering. Crystal Growth and Design 9 (3) pp. 1297-1305. 10.1021/cg070562v Cadair


Greaves, G.N., Wilding, M.C., Fearn, S., Langstaff, D., Kargl, F., Van, Q.V., Hennet, L., Pozdnyakova, I., Majérus, O., Cernik, R.J., Martin, C. 2008. In situ structural studies of alumina during melting and freezing. Advances in Synchrotron Radiation 1 (2) pp. 135-149. 10.1142/S1793617908000240 Other Cadair

Greaves, G.N., Catlow, C.R.A., Derbyshire, G.E., McMahon, M.I., Nelmes, R.J., Van der Lann, G. 2008. Two million hours of science. Nature Materials 7 pp. 827-830. 10.1038/nmat2305 Cadair

Greaves, G.N., Wilding, M.C., Fearn, S., Langstaff, D., Kargl, F., Cox, S., Van, Q.V., Majérus, O., Benmore, C.J., Weber, R., Martin, C.M., Hennet, L. 2008. Detection of first-order liquid/liquid phase transitions in yttrium oxide-aluminium oxide melts. Science 322 (5901) pp. 566-570. 10.1126/science.1160766 Cadair

Greaves, G.N., Wilding, M.C., Kargl, F., Hennet, L., Majerus, O. 2008. Liquids, Glasses, Density Fluctuations and Low Frequency Modes. Advanced Materials Research 39-40 (3) pp. 3-12. 10.4028/ Cadair


Greaves, G.N. 2007. Melting and Amorphisation. In K. D. M. Harris., P. P. Edwards. (eds) Turning Points in Solid-State, Materials and Surface Science: A Book in Celebration of the Life and Work of Sir John Meurig Thomas. Royal Society of Chemistry pp. 166-180. Cadair

McMillan, P.F., Wilson, M., Wilding, M.C., Daisenberger, D., Mezouar, M., Greaves, N. 2007. Polyamorphism and liquid–liquid phase transitions: challenges for experiment and theory. Journal of Physics: Condensed Matter 19 (41) 415101 International Workshop on Current Challenges in Liquid and Glass Science. 10.1088/0953-8984/19/41/415101 Cadair

Greaves, G., Sen, S. 2007. Inorganic glasses, glass-forming liquids and amorphizing solids. Advances in Physics 56 (1) pp. 1-166. 10.1080/00018730601147426 Other Cadair

Cristiglio, V., Hennet, L., Cuello, G.J., Pozdnyakova, I., Johnson, M.R., Fischer, H.E., Zanghi, D., Van, Q.V., Wilding, M.C., Greaves, N., Price, D.L. 2007. Structure of molten yttrium aluminates: a neutron diffraction study. Journal of Physics: Condensed Matter 19 (41) pp. 1-11. 10.1088/0953-8984/19/41/415105 Cadair


Greaves, G., Meneau, F., Majerus, O., Jones, D.G. 2005. Identifying vibrations that destabilize crystals and characterize the glassy state. Science 308 (5726) pp. 1299-1302. 10.1126/science.1109411 Cadair

Winter, R., Smith, I.H., Jones, A.R., Greaves, G.N. 2005. Na-23, Si-29, and C-13 MAS NMR investigation of glass-forming reactions between Na2CO3 and SiO2. Journal of Physical Chemistry B 109 (49) pp. 23154-23161. 10.1021/jp053953y Other Cadair


Greaves, G., Meneau, F., ap Gwynn, I.A., Wade, S. 2003. The rheology of collapsing zeolites amorphized by temperature and pressure. Nature Materials 2 pp. 622-629. 10.1038/nmat963 Cadair


Landron, C., Hennet, L., Jenkins, T.E., Greaves, G., Coutures, J.P., Soper, A.K. 2001. Liquid alumina: detailed atomic coordination determined from neutron diffraction data using empirical potential structure refinement. Physical Review Letters 86 pp. 4839-4842. 10.1103/PhysRevLett.86.4839 Cadair