# Gwybodaeth Modiwlau

Module Identifier
PH10410
Module Title
Electricity, Electric Circuits and Magnetism
2014/2015
Co-ordinator
Semester
Semester 2
Co-Requisite
None
Mutually Exclusive
Not available to Physics students on 3 year BSc (Hons) or 4 year MPhys schemes
Pre-Requisite
GCSE Mathematics and Science, or equivalent
Other Staff

#### Course Delivery

Delivery Type Delivery length / details
Lecture 22 Hours
Seminars / Tutorials 3 Hours Tutorial

#### Assessment

Assessment Type Assessment length / details Proportion
Semester Exam 2 Hours   written end of semester examination  80%
Semester Assessment Continuous Assessment - tests in weeks 6 and 11  20%
Supplementary Exam 2 Hours   written examination  100%

### Learning Outcomes

On successful completion of this module students should be able to:

Calculate the force on a charged particle in electric and magnetic fields.

Describe the motion of a charged particle in a uniform electric field.

Calculate the potential of a system of charged particles.

Describe the structure and function of resistors and capacitors.

Carry out calculations on capacitors involving stored energy, charging and discharging.

Calculate internal resistance, energy and power in DC circuits.

Calculate DC currents and voltages in resistor networks using Kirchoff's rules.

Calculate reactance and impedance in AC circuits.

Use phasor diagrams, vector methods and complex numbers to analyse AC circuits.

Apply conditions for resonance in RCL circuits

### Brief description

The concept of electric charge is introduced and electric force, field and potential are explained in terms of Coulomb's Law with illustrative examples. The flow of charge is considered and this leads to Ohm's Law and the concept of resistance. Capacitors and resistors are examined and examples are given of their use in electric circuits. A brief introduction to magnetism.

### Content

Electric Charge:

Positive and negative charge.
Conductors, insulators and semiconductors.
Coulomb's Law.
Electric field, potential and equipotentials.
Force on and motion of charged particle in a uniform electric field.
Charge and discharge of capacitors, time constant and half life decay.
Capacitors - construction, series and parallel combinations, stored energy.

DC Electricity:

Current and resistance;resistance, Ohm's Law, resistivity, ammeters, voltmeters.
DC circuits - resistors in series and parallel, internal resistance, energy, power.
Potential dicider circuits.
Kirchoff's rules.

AC Electricity:

AC currents in resistive, capacitive and inductive circuits; reactance and impedence.
Analysis of AC circuits using phasor diagrams, vector methods and complex numbers.
Power and phase angle.
RCL circuits in series and parallel, conditions for resonance.

Magnetism:

Dipole.
Force on Particle.
Solenoid.